Phoenix CMS Accéder au BO

INFORMATIQUE -TÉLÉCOM - CONSTRUCTEURS, HARDWARE - EDITEURS LOGICIELS, SOFTWARE - MULTIMÉDIA ET INTERNET...

Stage recherche - Vérification formelle de réseaux de neurones F/H


Orange SA
Châtillon

Réf. 1000830 - publié le 17 octobre 2024


M'alerter sur les offres

Informations générales

DOMAINE DE FORMATION

Informatique -Télécom - Constructeurs, Hardware - Editeurs logiciels, Software - Multimédia et Internet - SSII - Télécom

NIVEAU D'ÉTUDES

Bac +5

GRATIFICATION

20000 25000 ANNEE



Missions

Orange SA vous propose une offre de stage dans les domaines Informatique -Télécom, Constructeurs, Hardware, Editeurs logiciels, Software, Multimédia et Internet,... à Châtillon.

"Vous voulez tester les limites de l'IA, rejoignez nous !"  Adam, tuteur
#IA#Recherche opérationnelle

Pour les systèmes d'Intelligence Artificielle (IA) doté d'un haut niveau d'autonomie utilisés pour des applications critiques, il est primordial de s'assurer qu'ils sont fiables et robustes afin d'éviter des comportements non désirés ou non souhaitables. Dans ce stage, nous considérons un système d'IA réduit à un réseau de neurones profond, connu pour être fragile aux attaques adverses, d'empoisonnement de données, de portes dérobées, vols de modèles et de données. Nous proposons de sélectionner et d'évaluer un module de vérification formelle de systèmes d'IA à base de réseaux de neurones à l'aide de techniques de Recherche Opérationnelle.

L'objectif du stage est de trouver des méthodes permettant de tirer des conclusions sur le comportement de tels réseaux grâce aux techniques mathématiques et de participer aux tests d'un prototype logiciel à concevoir sur des cas réels. Le stage comporte les étapes suivantes :

-              Synthétiser l'état de l'art sur les techniques et algorithmes de vérification formelle des systèmes d'IA, avec une attention particulière à des domaines peu couverts par les articles de synthèse déjà publiés (Référence [1], par exemple)
o    Vérification au-delà du problème de la robustesse locale
o    Vérification " frugale " (en temps et/ou ressources de calcul)
o    Vérification de réseaux non reLU (rectified linear unit)

-              Analyse des résultats des challenges de la manifestation Verification of Neural Networks Competition (VNN-COMP) Référence [2]
-              Sélectionner et mettre en oeuvre les approches les plus prometteuses à partir de cette approche bibliographique
-              Elargir la gamme des données utilisées dans les challenges aux données tabulaires / séries temporelles et mener les expériences sur cette base élargie, en veillant à mettre en lumière les (éventuelles) complémentarités entre les approches, dans l'esprit de [3]

Voir la bibliographie avec les Références [1],[2],[3] dans le profil.


Profil

Ecoles d'ingénieurs ou Master BAC+5 en Recherche Opérationnelle/Intelligence Artificielle


Bibliographie

[1]        Changliu Liu, Tomer Arnon, Christopher Lazarus, Christopher Strong, Clark Barrett and Mykel J. Kochenderfer, "Algorithms for Verifying Deep Neural Networks", Foundations and Trends® in Optimization (2021) Vol. 4: No. 3-4, pp 244-404. ([1903.06758] Algorithms for Verifying Deep Neural Networks (arxiv.org))

[2]        Christopher Brix, Stanley Bak, Changliu Liu, Taylor T. Johnson , "The Fourth International Verification of Neural Networks Competition (VNN-COMP 2023): Summary and Results" (https://arxiv.org/abs/2312.16760)
 
[3]            Matthias König and Annelot W. Bosman and Holger H. Hoos and Jan N. van Rijn, "Critically Assessing the State of the Art in Neural Network Verification", Journal of Machine Learning Research (2024) Vol 25, No 12, pp 1-53 (http://jmlr.org/papers/v25/23-0119.html)


Postuler

Nom du recruteur : Annick SCHMUCK


Offres similaires

Nos sélections d'offres de stages

Les articles en lien

Partagez sur les réseaux sociaux !